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The problem of oscillations of two nonlinearly coupled oscillators in resonance seems to
have been considered for the first time by the authors of [1], who studied the plane cscil-
lations of an elastic pendulum (a point on a spring) (*).

Fer small oscillations this system can be regarded as two nonlinearly coupled subsys-
tems (two oscillators) (see Sect, 3 for detafls), The authors of [1] investigated the case
of (2:1) resonance of the “vertical” and "horizontal” oscillation frequencies of an elas~
tic pendulum,

They employed one of the variants of perturbation theory, namely the "method of
secular perturbations” (2], In this method the varisbles are separated into "rapidly” and
"slowly"” varying ones, and averaging is carried out over the rapidly varying variables,
The application of this method to the resonance case has not been sufficiently justified,

We note that some advances in the study of resonance cases in Hamiltonian systems
(see [3]) have been made recently,

The reduction of nonlinear Hamiltonian systems in the resonance case to the so-called
"normal form" [3](which is in a certain sense the simplest form) makes it possible to
advance the study of nonlinear systems by considering their normal forms, This approach
has already yielded some results on the stability of Hamiltonian systems in resonance
[3~17]. In the present paper reduction to the normal form is applied to the study of the
oscillations of the Hamiltonian system describing nonlinearly coupled oscillators in the
case of third-order resonance,

1, Statement of the problem, Let us consider the Hamiltonian system
describing n.nonlinearly coupled oscillators, i, e, let us assume that the Hamiltonian
of the system is of the form

Hp,=H®o+He o+ .+ H @ d+ .- (1.9

where Hi(p, ¢) are homogeneous polynomials of degree i; here

n p= (P Bp) 2
Hai(p, 7) = Z B, (r2+ 9 B; >0 (q = (1, - .,qf':; ) (4.2)
fmmi

In the above expression = iff, are the eigenvalues of the linearized system (**).
We also assume that there are no multiple eigenvalues, i, e, that §; = B; if i /.
Let the relation

*) It is interesting to note that this model problem arose in connection with the investi-
gation of oscillations in the CO, (carbonic acid) molecule and that the qualitative re-
sults provided by this model explain the “splitting of Raman scattering lines in carbonic
acid" [11.

**) It is clear that H, (p, ¢) can always be reduced to this form, provided it is positive~
definite,
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kiBy+ kot ...+ kB, =0 (.3

where k; are integers, be satisfied, From now on we assume the existence of just one
(i.e. to within a constant factor) relation of the form (1. 3).

The vector k = (ky, ..., ky)is called the resonance vector, The number k = | k| + ...
... 4| kp | is called the order of resonance,

In the event of resonance, i, e, of a relation of the form (1. 3), system (1.1) is reducible
to the so-called "normal form" [3], which is in a certain sense the simplest form,

Let us consider the set of integer vectors k for which (1, 3) is fulfilled, We denote the
linear shell of these vectors by L . Let us consider the Hamiltonian T (§,n). We introduce
the complex variables t,=E,+in, §, =t —in,

(v=1,,..,mn)

and expand T (%, 7)) in a series in {,, {,. The general term of this series is of the form

n
ca“b — “v'c by
where a = (ay, ..., an)s b= (by, ..., bp) are integer vectoss,

We say that the Hamiltonian I' is in normal form if its series expansion contains only
the "resonance” terms {%[®, where s — bE L.

The possibility of reducing Hamiltonian (1. 1) to normal form is guaranteed by the
theorem (e, g, see [3, 6]) whereby there exists 2 canonical transformation (g, p — &, 1)
such that Hamiltonian (1, 1) is ransformed into the Hamiltonian T (¢, %) in normal form,

From now on we shall confine our attention to the behavior of the system in the low-
est order of resonance which satisfies (1. 3). The following variant of the indicated theo-
rem will prove useful [6];

Theorem 1,1, Letthe lowest order of resonance defined by relation (1. 3) be m.
Then there exists a real polynomial canonical substitution of variables(g, p — §, 1) of
degree m — 4 such that Hamiltonian (1, 1) becomes the Hamiltonian

I* = Y Bo,+..otHp)+...+H,(p)+T, (p, )+ R(p, 9
ve=i

P=(peenp) O=@%.n0) b= ko, -u-—-[%—i]

a={

Here P,: @, are the canonical polar coordinates defined by the relations

E.='|/pasin(pq, n,=VP¢0°S(P¢ (a=1,...,n)
¥ is the "resonance phase”, H; (p) is 4 homogeneous polynomial of degree i in the

variables p, .
P ap)—{ZAVP“"cow if me=2d41, d>1
™ 24 Y o1 ¥ cos p + Appt?!, if m=2d, d>2
n n
k
k= 3k l=m 1= |1 1=d,  pl¥l=plulpfhl . glFn!
aw=i ae=i
! 131 11} 11
A= 3 Ay, g e eyt g
Tm=d

Here R (p, ) is of degree higher than m/2 in the variables Pg i l=1( ..., lp) is an
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integer vector,
The Hamiltonian
T=I*~R({ @ (1.4)
coincides with the normal form of the Hamiltonian I'* to within terms of order higher
than m/2-in the variables p,,

The system described by Hamiltonian (1.4) is called an " m-model system”, From
now on we shall consider three~model systems only, (In the case of third-order resonan-
ces this means that terms of order higher than 3/, in the variables p, have been discarded
from the normal form of the Hamiltonian),

We know [3, 6] that k n

Jaap,.._—k-“l- pPr (@=g..,mn), F=T-— Z Byo, (1.5
vane{

are the independent integrals of the system with Hamiltonian (1,4),

Here k4, .... k, are the components of the resonance vector k (k; == 0).

We note that Hamiltonian essentially depends on (n 4- 1) variables, namely on p;

(i =1, ..., n) and on the resonance phase . The system with Hamiltonian (1. 4) is inte~
grable provided integrals (1, 5) exist (the Liouville theorem),

Qualitative investigation of the behavior of system (1.4) in accordance with the ini-
tial conditions can be conveniently carrled out by using integrals (1. 5) to eliminate n-
variables and to obtain a first-order autonomous differential equation for one (any) of
the variables p;. Once one p; has been determined, the rest can be found from the inte-
grals J, ; the phases g; can then be determined by quadratures from the corresponding
equations for-g; defined by Hamiltonian (1. 4).

In some cases it is sufficient to investigate the behavior of the variables py alone,
since, as will be shown below, they represent the energy of the Ith oscillator in the first
approximation,

2. Third-order resonance, Third-order resonances correspond to one of the

following relationships (with the oscillators numbered accordingly):
By=28, or B+ = Bs.

We shall consider the resonance f, = 2f,. The authors of [1] investigated this reso-
nance for a system with two degrees of freedom (an elastic pendulum), i, e, for a Hamil-
tonian of the special form (3,2).

We can show that in the general case of Hamiltonian (1,1), (1.2) (if the Hamiltonian
does not contain terms of degree higher than the third in the variables p and ¢) the
qualitative picture of motion for the resonance in question is of the same character as
in the problem investigated in [1](*). '

For simplicity (see Note 2,1) we consider a system with two degrees of freedom, In
this case the three-model system, i.e. the system defined by a Hamiltonian of the form
(1.4) (m = 3) is given by the expression

T (p, ) = By (20, + pa) + 24 Vm cosY, Y= @ — 2¢, 2.1

We assume that the constant 4 == 0.
By virtue of (1, 5) system (2.1) has the following integrals:

*) We note that this result partly answers one of the questions posed by M. G, Krein at
the Fifth International Conference on Nonlinear Oscillations (Kiev, 1969),
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J = 2p, + pg» F = 24V pypa cos ¥ (2.2)
Integrals (2, 2) enable us readily to reduce the equation for p, to the form
9 2 VEFT—w=FF, Fi=F|4 (2.3)

A similar equation, though in somewhat different variables, was investigated in [1].
. Figure 1 shows the "phase portrait” (the integral curves) of
fz Eq. (2. 3) for several values of the integral F and a fixed
/ value of J.
This phase portrait contains two singular points: a saddle
{0y’ = p, =0) and a center (p; = 0, py = %/aJ). All of the
fz integral curves which do not pass through these singular
points are closed curves (cycles) intersecting the p,-axis at
a right angle, In fact

Fig. 1 der) 2.A (2J — 3ps) ps
dpr T V2P (J—p)— Fi?

becomes oo at p. = 0 (i.e, when the denominator is equal to zero) provided that
0p (27 — 3p;) = 0.

The center corresponds to motions such that p; , and therefore (see (2.2)) g, , remains
constant, For example, in the elastic pendulum problem [1] this corresponds to certain
periodic motions of the oscillators. Since the Pirepresent the energies of the ith oscil-
lators in the first approximation (see the expressions for p; in terms of the initial varia-
bles of the elastic pendulum problem, namely expressions (3, 8) below), it follows that
the figure can be conveniently interpreted in terms of "pumping transfer of energy” [11,

Periodic "pumping transfer of energy" from one oscillator to the other occurs for all
possible values of p, except the values associated with the singular points, This "pump-
ing transfer” proceeds with the period

—_— i
* =§> 2A V2o () —p2) —F°

where the integral is taken along the corresponding cycle (these periods can be expressed
in terms of elliptic functions),

The saddle (p," = p, = 0) is also associated with a periodic solution, but is of no inte-
rest,

When the initial conditions correspond to a separatrix, what we have is a limiting
motion, The representing point arrives at the origin after an infinite time (integral
(2.4) diverges), For initial values close to those corresponding to the separatrix we have
almost complete "pumping transfer of energy" from one oscillator to the other, and the
process lasts "a very long time" [1],

Thus, the picture of the "pumping rwansfer of energy™ described in [1] also applies in
the general case of resonance B, = 2p,.

Note 2,1. A similar picture of the "pumping wansfer of energy"” between reso-
nating oscillators in the case of the above resonance likewise applies when the oscilla-
tors are part of the system of r nonlinearly coupled oscillators. In these cases the expres-
sions for p, and p, (let the first and second oscillators be in resonance) depend on the
variables associated with the remaining oscillators,

(2.4)

3. The Vitt-Gorelik problem (oscillation of an elastic pendu-
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lum ib resonsnce (8.1) ). Let us consider the problem of oscillation of an ela~-
stic pendulum in the case of (2:1) resonance of the vertical and horizontal oscillations
wsing the theorem on reduction to the normal form,

Following the authots of [1], we shall consider an elastic pendulum, i.e. a load sus-
pended from a spring ; the upper end of the latter is fixed, We assume that the motion
occurs in a particular verrical plane, In our expressions r is the instantaneous length of
the spring, I, the length of the unloaded spring, 0 the angle of deviation from the vefti-
cal (which we assumne to be small at all times), m the mass of the load, % the spring
constant, and g the gravitational acceleration, The kinetic and potential energies of the
system are given by

m k 02
T == = (r' 4 r'9), V=="-g‘(f——lo)’-mxf(1—"5')+“'

Let us replace r by the coordinate z equal to the elongation of the spring relative to
its static length I = [, + mg [k, i,e. let swset z = (r— 0 /L

Since we are concemned with small oscillations, we can assurne that z is very small
compared with unity, Neglecting terms of order higher than the third in the small quan-
tities z and @ and their derfvatives, we obtain the following new expressions for the kine-
tic and potential energies:

12 ®/k
T=T5 (&34 67 + 267, Va%-(—;—z‘-{- Loy —f-we')
Let us introduce the impulses py == 97T / 9z, py = 3T / 08" associated with the coore
dinates z and 8. This enables us to express the Hamiltonjan as
1 m
H=T+V=—5 (P,’+Pq)+—‘(¢’z’+3'9')~—"-‘tpg -5 Br8?
m—ml’, =k/m, P=g/l, a,B>0

Here o and  are the frequencies of the linear oscillators (in the absence of nonlinear
coupling). The linear canonical substitution of variables

D
p;a:-v}-’.-.‘.'——;, z1me Y m'az, 337!;;73—, =Y mpo (3.1)
m
enables us to reduce the Hamiltonian to the form 8
H=1pla(p?+ o) +B(Et + )] —1a@p'—n) 1=y 3.2)

For simplicity (without limiting generality) we set @ = 2, § = 1. To reduce Hamil~
tonian (3, 2) to normal form, we seek the generating function W (z, ) for the canonical
transformation of variables

2D = 5 M (2= (3, 20 P = Py, Pa)s E = (1 Eo)» = (M1, My)).

Here w oW
Ei = —5‘-_,-‘— ’ p;= —&-‘— (i==1, 2) 3.3)

Since we are limiting ourselves of terms of order not higher than the third in A, we
seek the function W (z, 1) in the form W = W, + W, where W,, W, are second~ and
third-order homogeneous polynomials, respectively,

We note that H, (second-degree terms in H) is already in normal form, so that W,
can be taken in the form W, = 7,1 + ZNs. This is equivalent to identity transforma-
tion (& =3z, pi=mi(=1,2). The reduction of H = H, 4+ H, to the normal form
I =T, + I, in accordance with the procedure of reduction to normal form (3] involves
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the solution of a certain partial differential equation, In our case this equation is of the

form
2 ( Wy s ) + ( s i ) = — g7 (212* — Sz1ms® — 623va7)

W — 2 o, ™o, —*om
This equation can be solved by the method of undetermined coefficients (we recall
that W, is a homogeneous third-degree polynomial),
The solution of the above equation is the function
Wy =1/ ;7 [3512am; — T (8* + %")]

Thus, )
W= W+ W= 1, + s + Yo 7 31257 — m (22 + )] (3.4

The transformation defined by this function is of the form

2=k + Yoy & + n*a) P1m= My + vkany
2 = &y — Y1 (38185 — 2mmy), Pa = Mg + Yy (3% Mg — 2m4E,) (3.5)

In the new variables the Hamiltonian becomes

H =102 & + 0% + & + nY)] + 2y @QEnmait §.8° — &) (3.6)

Converting to canonical polar coordinates by means of the formulas

L= Veasing,  m= Vpicos g (my
we obtain the Hamiltonian in the familiar form (2. 1),
T = (2p, + pa) + %27 V oupe® cos (1 — 29) 6.9

Thus, canonical transformation (3, 5) reduces the Hamiltonian of the Vitt~-Gorelik prob-
lem 1o the normal form standard for third-order resonances in systems with two degrees
of freedom (investigated in Sect, 2),

The expressions for the variables

p1 = 5% 4 it — Ysv [5 (32 + p3®) + 35,0104) (3.8
pa = 2® + pg* + *a¥ [33; (215 — py?) + 2p1p, (35 + 3))]
indicate that in the first approximation the p; represent the energies of the ith oscilla-
tors; the third-order terms arise through interaction,

Note 3,1, Let the ratio of frequencies of the vertical and horizontal oscillations
in the above elastic pendulum problem be (1:2) (and not (2:1) as in [1]), The charac-
ter of Hamiltonian (3, 2) is such that on reduction to normal form (to within terms of
higher than the third order of smallness) the coefficient 4 in expression (2.1) is equal
to zero, Thus normal form (2, 1) is degenerate in this case, This means that in contrast
to the usual picture of the "pumping transfer of energy” in the case of third-order reso~
nance in a system with two degrees of freedom, the analysis of nonlinear coupling effects
in this case requires the retention of higher~order terms in the initial Hamiltonian (and
in the normal form), This picture will be considered in more detail in a future paper,

The author is grateful to V, V, Rumiantsev and L, G, Khazin for their interest in this
paper and for useful comments,
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Use of the action-angle variables (see e, g, [1]) leads, in a number of cases, to consider-
able simplification when the perturbation method is applied to study the dynamics of
perturbed motion, especially when computing the higher order approximations, Below
we obtain such variables for the problem of a solid rotating freely about a fixed point
(the Euler-Poinsot case),

Free motion of a solid with a fixed point can be described by a system of canonical
equations whose Hamiltonian is [2]

G*— G (sin@. cos? Gy’
t( e, ¢>+ 4

H=—y v B 50 )

Here 4, B, C are the principal moments of inertia of the body relative to the fixed
point, G is the kinetic moment, G, is its projection on the axis corresponding to the
moment of inertia C of the associated coordinate system, and 9, &, ¢ are the Euler
angles (of precession, nutation and self-rotation) defining the position of the body in the
fixed coordinate system of which one axis is collinear with the kinetic moment vector,
Position of this vector in the initial absolute coordinate system can be defined by the
following two quantities: L which is the projection of the kinetic moment on one axis
of the initial coordinate system, and the angle h. The quantities G, Gy, L, ¥, 9, h form
a complete set of canonical variables for the present problem.

Change to the action-angle variables is effected by means of a canonical transforma-
tion which transforms the Hamiltonian A into a function of impulses only, and is inde-
pendent of the angles,

In our problem we can use the triad G, L, I of impulses as the action variables, Here
I is the projection of the kinetic moment on an axis of the associated coordinate system,
averaged over the characteristic rotation , _ —2':?' @ G, do @



